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Electrostatics and kinetics of 2D electrons in lateral superlattices on
vicinal planes

A. V. Chaplik and L. I. Magarill

Institute of Semiconductor Physics, RAS, 630090 Novosibirsk, Russia

Abstract. The potential of one-dimensional lateral superlattice screened by two-dimensional
electron gas located in close proximity is found. The periodic potential created by the superlattice
effects on the kinetic and optical properties of the electron system. Magnetoreflectance, Faraday
rotation angle and ellipticity of the reflected electromagnetic field are calculated.

Introduction

One of possible ways to fabricate short periodic lateral superlattice (SL) is segregation
of charged impurities on vicinal planes of crystals (see Fig. 1). The terraced interface
of a heterojunction is populated by donors nonuniformly. The latters tend to aggregate
themselves at the edges of the terraces forming the chains of positive charges. As a result,
the 2D electrons residing close to the interface "see" a one-dimensional periodic potential
V(x) with the period a determined by the angle of disorientation of the vicinal plane (see
e.g. [ , , 1).

Usually the potential V(x) is represented by its Fourier components V (r ) which are
just given parameters of the theory. In the present paper we, first of all, calculate the
potential V(x) accounting for the screening effects in 2D electron gas. Then we consider
magnetooptical phenomena in ID lateral SL.

1 Screened potential of ID SL

Consider a periodic set of charged filaments parallel to the y-axis and placed in the plane
z = 0. The linear density of charge at each filament is . In the plane z = -A we have
strongly degenerate 2D electron gas. The problem is to find the self-consistent potential
V(x) and areal density of electrons cr(x) in the plane z = -A.

The electrostatic problem withfinite screening is, generally speaking, nonlinear because
the density of charge depends on the potential. However, a lucky exception is the Thomas-
Fermi limit for 2D electron gas. Indeed, the areal density of 2D electrons n(r) is given
by (T -- 0)

rn*

n(r) = + ()

where 0 (t) is the Heaviside step function, /t is the chemical potential. For a single charged
filament placed at the distance A above the 2D degenerate electron gas one has

qp(x; z = -A) = -2eKARe{e-iKEi[K(x - iA)]}, (2)

where Ei (t) is the exponential integral. After summation over all the filaments arranged in
the periodic set with the period a we arrive eventually at the formula for the potential of SL

V rx = 0 e - z sinh [27r(A + z/K)/a (3

Ka cosh [27r (A + z/IK)/aI - cos2 (rx/a)"
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Fig. 1. Two-dimensional electron gas at a vic- Fig. 2. Frequency dependence of the re-
inal surface; + charged donors, - electrons. flectance at B = 0. Here and in the fol-

lowing figures solid (dash) line corresponds
to Ril (R±).

The Fourier components V(r) of the potential (3) can be calculated analytically. For
example,

V(M = r e- 2,7A/a

Ka I + 2rl/Ka"

2 Dynamic conductivity of ID SL

In this section the expressions for components of a dynamic magnetoconductivity tensor
cr (o, B) of ID lateral superlattice are derived. The linearized kinetic equation for a degen-
erate (T = 0 K) electron system subject to a laterally modulating potential V(x), a constant
uniform magnetic field B (axis z) and a microwave field E(t) = Re(Ewe - iwI) reads:

ZoX- V(x)cos¢-+ a -sin +wo)
axX 'V Dx 'D

+-1 - io x = -eEouv(x). (4)
Tr7

Here u is the unitvector (u = (cosqi, sin p)), v(x) = VF/1 + eV(x)/EF is the magnitude
of the electron velocity (vF is the Fermi velocity), wo, = eB/m*c is the cyclotron frequency,
r is the relaxation time (assumed to be constant).

We assume the lateral potential V(x) to be weak that allows one to solve Eq. (4)
perturbatively. To the lowest order in V we come to the following expression for magne-
toconductivity:

rTOr rldixdxJq212 C 
r2 leV(1 2  S(rqvF/wc)

ora (wo B) 017 Jd - (5d) 11  L r
i B 1 r2+y 2  di 2(112+ y 2 ) r E2 I - S(rqvF/wc)

c n 2 ()
S(z)=i 7r] n~y2 + ]2 .
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Fig. 3. Magnetic field dependence of AR(B) = Fig. 4. Magnetic field dependence of the
R(B) - R (0)(B) for for (ot = 40. Solid ticks in- Faraday rotation angle , and ellipticity 6
dicate the positions of dynamic Weiss oscillations for (or = 4.
followed from Eq. (6), dashed ticks mark CR har-
monics (o = N,.o,).

Here q = 27r/a, cro = Nse 2 r/m*, d,, = dy = 1, dy, = -dy = y/T1, y = w.T,

il = I - ioT, I = VFT is the free path length, J,(z) are Bessel functions.

3 Magnetoreflectance and Faraday effect

The expressions (5),(6) allows us to find the reflectance R, Faraday rotation angle 0 and
ellipticity 6.

The results of numerical computations are depicted in Figs. 2-4. For calculations the
following parameters have been used: /t = 5 104 cm 2n/V.s (T = 1.9ps), m* = 0.067mo,
Ns=, 4. 101 cm- 2 (E =- 14.29 meV, vF = 2.74.10 7 cm/s), a* = 10.12 nm, a = 32 nm,

A = 75A, = 2 • 105 e/cm, n = 3.58f. At B = 0 we plot RI and R2 as functions of
the frequency o (Fig. 2). For y-polarized incident wave we have conventional monotonic
Drude behavior R± = R(°)((o) ; we denote by R (° ) the reflectance of the unmodulated
system. However for x- polarized case the effect of lateral SL results in the curve RI (w0)
with maximum at (o" - 1. In the magnetic field the results essentially depend on the
interplay of parameters wo, wo = 2 7rvF/a and T. In the frequency region I << (OW << OOT

(for chosen parameters (o0T = 72.4), a picture of beatings occurs: the envelope function
connected with the cyclotron resonance (CR) and its harmonics modulates conventional
Weiss oscillations. An example of R(B) corresponding to the case o $< wo(o)T = 40)
is shown in Fig. 3. Under given frequency CR harmonics are modulated by the envelope
function with minima which obey the relation

2 4 ( w w (O Ndw - ,(6)
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where (D(x) = I - x2-xarctan (I/X 2 
- 1),NdW = 1,2.... Here we have the manifes-

tation of so called dynamic Weiss oscillations. The possibility of observation of Weiss-type
oscillations in dynamic regime has been predicted in [ ]. At wo > Wo only CR harmonics
with the exponential envelope function are left (no Weiss oscillations).

Similar oscillation behavior due to the periodic lateral potential can be also observed in
other magnetooptical values, as a transmittance, Faraday rotation angle etc. B-dependence
of the Faraday rotation angle and ellipticity in a reflected electromagnetic wave is shown
in Fig. 4. In the accepted scale the results for two polarizations coincide very closely.
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